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Exact density profiles for the fully asymmetric exclusion process with discrete-time
dynamics on semi-infinite chains
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Exact density profiles in the steady state of the one-dimensional fully asymmetric simple-exclusion process
on a semi-infinite chain are obtained in the case of forward-ordered sequential dynamics by taking the ther-
modynamic limit in our recent exact results for a finite chain with open boundaries. The corresponding results
for sublattice-parallel dynamics follow from the relationship obtained by Rajewsky and Schreckenberg
[Physica A245 139 (1997], and for parallel dynamics from the mapping found by Evans, Rajewsky, and
Speer[J. Stat. Phys95, 45 (1999]. Our analytical expressions involve Laplace-type integrals, rather than
complicated combinatorial expressions, which makes them convenient for taking the limit of a semi-infinite
chain, and for deriving the asymptotic behavior of the density profiles at large distances from its end. By
comparing the asymptotic results appropriate for parallel update with those published in the above cited paper
by Evans, Rajewsky, and Speer, we find complete agreement except in two cases, in which we correct technical
errors in the final results given there.
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[. INTRODUCTION ordered sequential updates are simply related to each other,
p(iI)=pi (i)—J;", and to the local densityl(i) for the
We consider the current and density profiles in the steadgublattice-parallel updafe],

state of the fully asymmetric simple-exclusion process

(FASEP with open boundaries and different discrete-time

updates, namely, ordered sequential, sublattice-parallel, and Sl p (i), i odd

parallel. We remind the reader that the model describes a prl(D=y .= . Y

_ ) : ) - p (i), 1 even.
system of particles on a chain, hopping with probabifity
only to empty nearest-neighbor sites to the right. Each of the

L sites of the chain can be either empty or occupied by ex- | the cases of random-sequential, ordered sequential, and
actly one particle. Open boundary conditions mean that a§p|attice-parallel updates, the matrix-product representation
each time stegupdate of the whole chaira particle is in-  jnvolves infinite-dimensional matrices that satisfy a particu-
jected with probabilitya at the left end of the chaini ( |ar quadratic algebra. Finally, the most difficult case of fully
=1), and removed with probability at the right end i(  parallel dynamics and open boundaries was solved by Evans,
=L). The definition of the model includes the choice of the Rajewsky, and Speéf0], by using site-oriented MPA with
stochastic dynamics, i.e., the update scheme which specifiesatrices satisfying a quartic algebra. Moreover, these au-
the order in which the local hopping, injection, and particlethors showed that the current and local densities for the
removal are implemented. The case of random-sequenti@hodel with parallel update can be simply mapped onto those
update is considered as a lattice automaton realization of tHer the previously solved discrete-time updates. An indepen-
corresponding continuous-time process. In the general casedent, bond-oriented MPA solution for the stationary FASEP
was solved first by using the recursion relation metfibd],  problem with parallel dynamics was found by de Gier and
and then by means of the elegant matrix-product ansatilienhuis[11]. In the case of general values of the hopping
(MPA) [3]. As was proved latdi4], the MPA is actually not  probability p, they presented explicit expressions for the cur-
an ansatz, but an exact representation of the stationary statent and the discrete slopg(i)=p (i+1)—p.(i) of the
of any one-dimensional system with random-sequential dyedensity profile in all qualitatively different domains of the
namics involving nearest-neighbor hoppings and single-sitparameter space.
boundary terms. The method of the MPA was next success- In our recent papefl12] we derived, independently of
fully applied for solving the following basic cases of true [10,11 and by using a different method, exact expressions
discrete-time dynamics: forward-ordered sequentiad)(  for the steady state curreni,” and the local density
backward-ordered sequentiak—) [5,6], and sublattice- p,"(i), ie{1,... L}, for the FASEP on a finite chain with
parallel (S-[) [7,8], which turned out to be closely related forward-ordered sequential dynamics and open boundaries.
[9]. Thus, the current has the same value in all these caseShese expressions involve integrals that at ldrgend large
szszJS”; the local densities at sites{1,... L} for  distance from the chain ends are of the Laplace type; hence
the FASEP with forward-p, (i), and backward-p, (i), they are convenient for asymptotic analysis. We point out
that from the simple mappinffl0] of the above quantities
onto the current]ﬂ and local densitypﬂ(i) for the model
*Email address: brankov@bas.bg with parallel update,
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1.0 I T T T positioned with respect to the diagonak 3. Indeed, by
taking theL—oo limit in the symmetry relation for a finite
chain[9], p_"(i|a,8)=1—3_ —p_ (L—i+1|B,a), one ob-

s L All C i tains that

L SR poiila,B)=1-3. = p. (i B,a0). (5)
\‘\\ Therefore, it suffices to derive explicit expressions for the

06 |- Y 7 local densitiesp..’ (i|a,8) andp.. (j|a,B) for, say,a<}p,

B s i.e., in the maximum-current and low-density phases. More-
B - T~ over, by applying thd.—< limit form of the mapping(2)
04| i \ - with i fixed at a finite distance from one of the chain

Al N ends(e),
| N\ ,
B 3 podi) 32
. | \ . L= phd)="""(e=ln), (6
I A
E \‘ to the results fop.. (i), one obtains the corresponding ex-
0.0 1 1 L 1 - pressions forpﬂo,e(i), i=12,..., el,r. We emphasize
0.0 0.2 04 ¢ 06 P08 1.0 that the resulting expressions for the density profiles on

a semi-infinite chains are much simpler than those on finite
chains, and they again involve integrals that are of the
FIG. 1. The phase diagram in the plane of the injection and-aplace type for large distances from the chain end. Hence,
removal probabilitiesr and 8 (see the tejtfor hopping probability ~ their asymptotic behavior is readily deduced. In order to
p=0.75. The maximum-current phase occupies redglorRegion ~ make precise comparison with the asymptotic expansions for
A=AIUAII corresponds to the low-density phase, and regibn the right-hand local density profiles obtained 19], one has
=BIUBII to the high-density phase. SubregioWd (Bl) and to take into account that there, before taking the liit
All (BII) are distinguished by the different analytic forms of the — o, the sites are labeled from the right end of the chain to
density profile. The boundary between them=p8., O<«a the left byn=L—i=0,1,2 ..., rather than byj=L—i+1
<ac (a=a;,0=B<p), is shown by the dashed segment of a —1 2 .. . as in oudefinition (4). By comparing the largg
straight Iuje. The s_,olld linex= B between s_ubreglon@ andBl is asymptotic behavior qeﬁﬂc (j), obtained via the mappin®)
the coexistence line of the low- and high-density phases. Thg it the corresponding results of Evans, Rajewsky, and
curved dashed line is the mean-field line{&)(1—-8)=1—p. Speel[10] for p,, with n=j — 1, we find complete agreement
in all but two cases, in which we correct technical errors in
U |y PU(DHIC the final asymptotic expression®.22 and (9.28 given
143" pLU _T’ 2 there. The expressions for the slope of the density profile
derived in[11] for general values of the hopping probability
exact representations fO}J\L and p',‘_(i) follow that do not P a_lctually represent the Ieading-(_)rder asymptotic forms_ of
contain complicated combinatorial expressions like those obtL(i) that follow from our expressions for the local density
tained by Evans, Rajewsky, and Speer. pL(l)_ [12] in the sem|_-|nf|_n|te_ (_:ham I|m|L—>_oo and in the
We shall present here exact expressions for the local deff€@ding-order expansion in finite but large-i=n>1; see
sity profiles of the model on a semi-infinite chain with either tN€ results and comments below. For recent general reviews

left-hand (1) end point, on[t1h3e I\l/IgA ASEP, and related systems we refer the reader
to -15.
p (i, B)=lim p(i]a, B), (3) Concerning the notation, we make the following remarks.
’ L In contrast to our previous wofl 2], here we shall adhere to
the conventional labeling of the different regions in the phase
or right-hand(r) end point, diagram(see Fig. 1 The mean field line shown there is
_ ) ) given by the equation («)(1—B8)=1-p, and the two
pelile,B)=limp (L—j+1|e,B). (4 other special lines are defined by

Lo

a=a.=1-V1-p, B=B.=1-1-p. @)

In the former case the limilL—« is taken at fixedi

=1,2,...,which labels the sites of the chain from its left The exact finite-chain results obtained [ib2] are conve-
end to the right. In the latter case the limit-> is taken at  niently expressed in terms of the parameters
fixedj=1,2,...,which labels the sites of the chain from its p—a p— B

right end to the left. Note that for fixed hopping probability — d=.1-p, a=d+d !, ¢é=—, p=—r,

p, and any point &,3) on the phase diagrafsee Fig. 1, the ad Bd
right-hand profilep..’ (i|a,B) is closely related to the left- )

hand profilep;|(i|/3,a) for a point that is symmetrically which will be used here too.
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II. LOCAL DENSITY IN THE MAXIMUM-CURRENT
PHASE

The maximum-current phase occupies the regiQr: «
<1 andB.<B=<1; see regiorC in Fig. 1. In terms of the
variables (8) the above inequalities read d<¢<1 and
—d=s9n<1.

The final exact result obtained ih2] for the local particle
density in the maximum-current phase is

d
pL(i)= (1 Jp)+ 2pZ[ L) =(E=mZi_1Z ]

©)

HereZ,=Z,(&,7) has the representatior £ 7)

nog 7
Zy(&,m)= ( = 7]-n(§)+ n_gln(n) , (10
which involves the integral

2 (7 (a+2cosp)"sir? ¢

ln(§)=;JO d¢ 1 2¢cosd+ &2 (11

The expression foZ,(¢,&) follows by taking the limit»
—£&in EQ. (10). The current, (&, 7) is given by

J (& m=Z _1(&nIZ(E, 7).

The termF (i)=F_(i;¢,7) in Eq. (9) is an antisymmetric
(with respect to the center of the chafminction of the inte-
ger coordinatd, F (i;&,7)=—F_ (L—i+1;¢ 7), defined

for 1=<i<[L/2] ([x] denotes the integer part a by the

equation

(12

d L—1 L—2i
FL(i;f.n)=(B) (1_57])20|L7i7n71(5)|i+n71(77)-
(13
In order to take the limit. — o0 in Eq. (9), we make use of

the largen asymptotic form of the Laplace-type integral
(11:

( )n+3/2
n(6)—”— 1-¢ n~¥1+0(n" Y] (£&#1)
n+1/2
In(l)=%nl’2[l+0(n1)]. (14)
T

By substituting the above expansion in Ed0), we obtain
that in the maximum-currenfMC) phase the leading
asymptotic form ofZ,(¢,7) is (¢#1,7#1)
d n
2ﬁ<1—§)2<1—n)z(5)
)n+3/2

[1+0(n Y.

1-¢én

ZV(& )=

(at+2
X (15

Hence, the asymptotic form of the current reads
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1-J1-p
1+V1-p

independently of the parametesisand 8. With the aid of
Eq. (15), at fixedi we obtain

MC

L = [1+O(L™ Y], (16)

4z
2p Z

li_ -7l
_fa@ ol
2({—n)(a+2)

Next, we split the sum ovarin Eq. (13) into two parts, from
0 to[L/2]—i and from[L/2]—i+1 to L—2i, and replace
the cofactor in the produdt _; _,_1(é)!l;+,_1(7) which has
a large subscript ds— o by its asymptotic forn{14). Thus,

we prove the limit

im 8 FL(i;g,n)_%i (1821 1(8)

L[nw 2p Z (&) (a+2)fntt
(1 7]) itn-1(7)
18
(a+2)|+n+l ( )
Finally, by using the identity
1o (1-9%,01(8) G 1—&li 1()
2 nzo (a+2)i+n+1 - (a+2)i ! (19)
where
1 (=
Gn=—f d¢(a+2 cose)"(1+cose), (20
mJo

and collecting the above results, we obtain an exact expres-
sion for the local density profile of a semi-infinite chain with
left-hand end point in the form

P ()= 777 )|[G| 1= &) (2D

1+d (a+2
The approach of the left-hand profile for finite chains, ob-
tained by computer simulations, to the linil) as the chain
size increases is illustrated in Fig. 2.

The asymptotic behavior foe>1 readily follows from the
expansiong14) and

’ l:—(a+2)i1/2[i1/2
i—

NG

a. _ .
T 321 0(i 5’2)}. (22)

Thus we obtain

o d az 1 2-p
Poc,|(|):1 d+ o= 172
+d  Jm(1+d) Jm(1+d)| 16d
1/2,
+ad (p CY) 73/2 O( 5/2). (23)
2(a—ag)?
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FIG. 2. The approach of the left-hand local number-density pro-

file p versus the site numberin the maximum-current phasex(

=pB=0.8, p=0.75), obtained by computer simulations for finite

chains of lengthL [solid squares,L=300, solid triangles,
L =1000(data averaged over 300 runs df Monte Carlo steps per
site)], to the limit given by Eq(21) (solid line).

Hence, by using the symmetry relati¢s) and the mapping

(6) onto the case of parallel update, after taking into accoun

the correspondence=i—1 with the expansion variable
used in[10], we obtain

1/2

pn=pl (N+1)==———=n"124 m
nor 2 2w 32\/7d 12

. Bd*p-p)
4\m(B~Be)?
This result coincides with Eq9.22 of Ref.[10] except for

the sign of theO(n~?) term. The first two terms in the
right-hand side of Eq(24) generate Eq(87) in [11], pro-

n~¥+0(n"?). (24)

vided the slope of the density profile is considered there near’
the right-hand boundary of a semi-infinite chain, i.e., when

L—oo, i/L—1.

Ill. LOCAL DENSITY IN THE LOW-DENSITY PHASE

The low-density phase occupies the regiex 8 and «
<a,; see regiorA=AlUAIl in Fig. 1. In the case of a finite
chain of L sites, up to corrections exponentially smalllin
the current in the low-densitt. D) phase i 12]

p _a(p~a)

LD _ —
JL (f:ﬂ)—d(a+§+§7l) p(l_a)

(25

With respect to the asymptotic form of the density profile
near the right-hand end of the chain, one distinguishes two

subregionsAl and All.
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Subregion Al a<a, and a<pB<p; (£>n>1). As
shown in [12], up to terms that are uniformly iri
=1, ... L exponentially small ak—0, the local density is

. a(l-p)
pL(Ilgi 7])_ p(l—a)

_ _ L—i
n—n ' [atnty?
até+et atére?t

(D)= ml-i(m)
(a+ g_’_ g*l)L*iJrl '

(26)

Hence, in the limitL — at fixedi, we obtain thap_,’ (i) is
uniform, equal to the bulk density given by the first term in
the right-hand side of Eq26). If the limit L— is taken at
fixed j=L—i+1, we obtain the exact expression for the
nontrivial density profile on a semi-infinite chain with right-
hand end point:

j

1 1

atntn
atere?t

a(l-p)  7—n
p(l—a) a+n+ 77_1

&) —mlj—a(m)
(ate+e

p:,r(j):

(27)

At large distance from the end of the chaj®1, the
leading-order asymptotic form @k, (j) is given by the first
two terms in the right-hand side of E(7). Upon mapping
on the case of parallel dynamiftsee Eq(6)], and taking into
ftccount the labeling corresponderjeen+ 1, our result co-
Incides with Eq.(9.295 of [10]. Thus, the leading-order ex-
pression for the slope of the density profileras « exactly
reproduces Eq82) in [11].

Subregion All a<a,; and 8> 8. (é£>1 andp<1). As
shown in [12], up to terms that are uniformly in
=1, ... L exponentially small ak —«, the local density in
this subregion is

ey @R Bl ()
pLL S 7 p(l—a) (a+§+§—l)L—i+l ’

(28)

Hence, in the limitL —co at fixedi, we obtain thap_.’ (i) is
again uniform, equal to the bulk density. When the lifnit
© is taken at fixedj=L—i+1, we obtain the exact ex-
pression for the nontrivial density profile on a semi-infinite
chain with right-hand end point:

a(1-p)

= (i) = & (O —7la(m)
o op(l-a) '

(a+é+e

At large distance from the right-hand end point; 1, the
leading-order asymptotic form @f,’ (j) in subregionAll is

(29

é(_)_a(l—p)_ a+2[ & B 7
Pt o) o L8712
a+2 J
X(—) j73/2+ O(j75/2)_ (30)
at+é+éet
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FIG. 3. The behavior of the right-hand number-density prgfile
versus the scaled distanece=i/L in subregionAll («=0.2, B
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i

()= a(l-p) 1 a+2 172
Pt = p(1=a) Jmyar2\atere t)
+0(j %7, (32

Upon mapping on the case of parallel dynamics with the aid
of Eq. (6), we recover exactly Eq9.29 in [10]. Thus, for
the leading-order asymptotic form of the slope of the density
profile asn— oo one obtains Eq(83) in [11].

IV. DISCUSSION

Summarizing, we have calculated exactly the local den-
sity profiles in all the phases of the FASEP on semi-infinite
chains with open left-hanarticle injection or right-hand
(particle removal boundary. The expressions obtained are
much simpler than the finite-size ones, and they readily ad-
mit large-distance asymptotic analysis.

The following general features of the local density pro-
files on semi-infinite chains turn out to be common to all the
basic updates.

(i) The profile in the maximum-current phase depends on
the boundary condition at the finite end point of the chain,

=0.6,p=0.75): the solid squares present the results of computefNd does notdepend on the boundary condition at infinity.

simulations for a finite chain df =300 sites, the solid line corre-
sponds to Eq(29) for L=300, and the dotted line to the leading-
order asymptotic form of the profile for a semi-infinite chain given
by Eg. (30).

A comparison of the right-hand density profile for a finite
chain[Eq. (28)] and its leading-order asymptotic form on a
semi-infinite chain[Eq. (30)] with the result of computer
simulations forL =300 is given in Fig. 3.

a and B, and taking into account the labeling correspon-
dencej=n+1, we obtain

a(l—a) d2

p—a’

BB
(,3_:80)2

a(p—a)

(a_ac)2

a(p—a)
2\m(p—a? 1-d
} a(p~a) y ~312

(1—a)(1-d)?

a(p—a) U
(1—a)(1-d)?| |-

This is the correct version of Eq9.28 in [10]; the error

pl (n)=

—5/2

+0[n (31)

The leading-order approach to the bulk density with the dis-
tancei from the chain end is of the ord€@(i ~*?) and does
not depend on the boundary conditions at all.

(i) The local density is uniform in the low-density phase
of a chain with left-hand end point, and in the high-density
phase of a chain with right-hand end point.

(iii ) The local density profiles in the low-density phase of
a chain with right-hand end point, and in the high-density
phase of a chain with left-hand end point, depend on the
boundary conditiondoth at the finite end point and at infin-

'gy. This fact is reminiscent of the dependence of equilibrium

states with spontaneously broken symmetry on boundary
conditions at infinity. However, it is the continuity of the
current that here keeps the information about the boundary
condition at the chain end that goes to infinity in the limit
L—oo,

(iv) The analytic form of the local density profile on a
semi-infinite chain with right-handleft-hand end point
changes on passing from subregiéh (Bl) to subregion
All (BIl) within the low-density(high-density phasdg com-
pare Egs.(27) and (29)]. The leading-order large-distance
asymptotic approach to the bulk density is also qualitatively
different: in Al (BI) the approach is purely exponential,
with inverse correlation length ~*= |\, "=\ *|, while in
All (BIl) the approach is exponential, with power-law pref-
actorj ~*? and inverse correlation lengthi (A, %), where

there occurred on passing to the second equality in Eg.

(9.27). For the slope of the density profile the first two terms
in the right-hand side of Eq31) yield Eqg.(84) in [11] as a
leading-order expression whers 1.

The boundary between subregions Al and &K « and
B=p: (£>1 andn=1). The exact expression for the den-
sity profile on a semi-infinite chain with right-hand end point
is given by Eq.(29) at »=1. Its large-distance asymptotic
form is readily obtained with the aid of expansiaig}):

até+e?t

-1_
e =In a+?2

(33

On the borderline between these two subregions the leading-
order asymptotic approach is exponential, with power-law
prefactor j ~Y? and inverse correlation length given by
Az *(\,1). On crossing the mean-field line in subregion
All (BIll), the analytic form of the profile does not change,
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only its bending near the right-hariéft-hand end changes sults for the finite-chain curredt” and local density (i)

from downward(upward above that line to upwar@own-  [12] onto the case of parallel update, exact representations

ward) below it[see Eq(30)]. for J| andp] (i) follow, which, in contrast to those found in
(v) The correlation length depends on the type of updat¢1] are convenient for asymptotic analysis. Finally, by

only: for all the true discrete-time updategis given by EQ.  comparing the asymptotic results so obtained to those pub-
(33), and for the random-sequential upd@see Eq.(78) in  jisheq in[10], we have corrected technical errors in two of

[31] the expressions given there. The leading-order large-distance
1 expressions that follow for the slope of the density profile
)\alzln<4a(1—_a)>. (34)  near the right-hand end point of a semi-infinite chain repro-

duce the corresponding results obtainedif].
We point out that from the mappin@) of our exact re-
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