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Exact density profiles for the fully asymmetric exclusion process with discrete-time
dynamics on semi-infinite chains

Jordan Brankov* and Nina Pesheva
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 4, 1113 Sofia, Bulgaria

~Received 10 November 2000; published 28 March 2001!

Exact density profiles in the steady state of the one-dimensional fully asymmetric simple-exclusion process
on a semi-infinite chain are obtained in the case of forward-ordered sequential dynamics by taking the ther-
modynamic limit in our recent exact results for a finite chain with open boundaries. The corresponding results
for sublattice-parallel dynamics follow from the relationship obtained by Rajewsky and Schreckenberg
@Physica A245, 139 ~1997!#, and for parallel dynamics from the mapping found by Evans, Rajewsky, and
Speer@J. Stat. Phys.95, 45 ~1999!#. Our analytical expressions involve Laplace-type integrals, rather than
complicated combinatorial expressions, which makes them convenient for taking the limit of a semi-infinite
chain, and for deriving the asymptotic behavior of the density profiles at large distances from its end. By
comparing the asymptotic results appropriate for parallel update with those published in the above cited paper
by Evans, Rajewsky, and Speer, we find complete agreement except in two cases, in which we correct technical
errors in the final results given there.

DOI: 10.1103/PhysRevE.63.046111 PACS number~s!: 05.60.2k, 02.50.Ey, 05.70.Ln, 64.60.Ht
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I. INTRODUCTION

We consider the current and density profiles in the ste
state of the fully asymmetric simple-exclusion proce
~FASEP! with open boundaries and different discrete-tim
updates, namely, ordered sequential, sublattice-parallel,
parallel. We remind the reader that the model describe
system of particles on a chain, hopping with probabilityp
only to empty nearest-neighbor sites to the right. Each of
L sites of the chain can be either empty or occupied by
actly one particle. Open boundary conditions mean tha
each time step~update of the whole chain! a particle is in-
jected with probabilitya at the left end of the chain (i
51), and removed with probabilityb at the right end (i
5L). The definition of the model includes the choice of t
stochastic dynamics, i.e., the update scheme which spec
the order in which the local hopping, injection, and partic
removal are implemented. The case of random-seque
update is considered as a lattice automaton realization o
corresponding continuous-time process. In the general ca
was solved first by using the recursion relation method@1,2#,
and then by means of the elegant matrix-product an
~MPA! @3#. As was proved later@4#, the MPA is actually not
an ansatz, but an exact representation of the stationary
of any one-dimensional system with random-sequential
namics involving nearest-neighbor hoppings and single-
boundary terms. The method of the MPA was next succe
fully applied for solving the following basic cases of tru
discrete-time dynamics: forward-ordered sequential (→),
backward-ordered sequential (←) @5,6#, and sublattice-
parallel (S-i) @7,8#, which turned out to be closely relate
@9#. Thus, the current has the same value in all these ca
JL

→5JL
←5JL

S-i ; the local densities at sitei P$1, . . . ,L% for
the FASEP with forward-,rL

→( i ), and backward-,rL
←( i ),
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ordered sequential updates are simply related to each o
rL

→( i )5rL
←( i )2JL

→ , and to the local densityrL
S-i( i ) for the

sublattice-parallel update@8#,

rL
S-i~ i !5H rL

→~ i !, i odd

rL
←~ i !, i even.

~1!

In the cases of random-sequential, ordered sequential,
sublattice-parallel updates, the matrix-product representa
involves infinite-dimensional matrices that satisfy a partic
lar quadratic algebra. Finally, the most difficult case of fu
parallel dynamics and open boundaries was solved by Ev
Rajewsky, and Speer@10#, by using site-oriented MPA with
matrices satisfying a quartic algebra. Moreover, these
thors showed that the current and local densities for
model with parallel update can be simply mapped onto th
for the previously solved discrete-time updates. An indep
dent, bond-oriented MPA solution for the stationary FASE
problem with parallel dynamics was found by de Gier a
Nienhuis@11#. In the case of general values of the hoppi
probabilityp, they presented explicit expressions for the c
rent and the discrete slopetL( i )5rL( i 11)2rL( i ) of the
density profile in all qualitatively different domains of th
parameter space.

In our recent paper@12# we derived, independently o
@10,11# and by using a different method, exact expressio
for the steady state currentJL

→ and the local density
rL

→( i ), i P$1, . . . ,L%, for the FASEP on a finite chain with
forward-ordered sequential dynamics and open bounda
These expressions involve integrals that at largeL and large
distance from the chain ends are of the Laplace type; he
they are convenient for asymptotic analysis. We point
that from the simple mapping@10# of the above quantities
onto the currentJL

i and local densityrL
i ( i ) for the model

with parallel update,
©2001 The American Physical Society11-1
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JL
i 5

JL
→

11JL
→ , rL

i ~ i !5
rL

→~ i !1JL
→

11JL
→ , ~2!

exact representations forJL
i and rL

i ( i ) follow that do not
contain complicated combinatorial expressions like those
tained by Evans, Rajewsky, and Speer.

We shall present here exact expressions for the local d
sity profiles of the model on a semi-infinite chain with eith
left-hand~l! end point,

r`, l
→ ~ i ua,b!5 lim

L→`

rL
→~ i ua,b!, ~3!

or right-hand~r! end point,

r`,r
→ ~ j ua,b!5 lim

L→`

rL
→~L2 j 11ua,b!. ~4!

In the former case the limitL→` is taken at fixedi
51,2, . . . , which labels the sites of the chain from its le
end to the right. In the latter case the limitL→` is taken at
fixed j 51,2, . . . ,which labels the sites of the chain from i
right end to the left. Note that for fixed hopping probabili
p, and any point (a,b) on the phase diagram~see Fig. 1!, the
right-hand profiler`,r

→ ( i ua,b) is closely related to the left
hand profiler`, l

→ ( i ub,a) for a point that is symmetrically

FIG. 1. The phase diagram in the plane of the injection a
removal probabilitiesa andb ~see the text! for hopping probability
p50.75. The maximum-current phase occupies regionC. Region
A5AIøAII corresponds to the low-density phase, and regionB
5BIøBII to the high-density phase. SubregionsAI (BI) and
AII ( BII) are distinguished by the different analytic forms of th
density profile. The boundary between them,b5bc , 0<a
<ac (a5ac ,0<b<bc), is shown by the dashed segment of
straight line. The solid linea5b between subregionsAI and BI is
the coexistence line of the low- and high-density phases.
curved dashed line is the mean-field line (12a)(12b)512p.
04611
b-
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positioned with respect to the diagonala5b. Indeed, by
taking theL→` limit in the symmetry relation for a finite
chain@9#, rL

→( i ua,b)512JL
→2rL

→(L2 i 11ub,a), one ob-
tains that

r`, l
→ ~ i ua,b!512J`

→2r`,r
→ ~ i ub,a!. ~5!

Therefore, it suffices to derive explicit expressions for t
local densitiesr`, l

→ ( i ua,b) andr`,r
→ ( j ua,b) for, say,a<b,

i.e., in the maximum-current and low-density phases. Mo
over, by applying theL→` limit form of the mapping~2!
with i fixed at a finite distance from one of the cha
ends~e!,

J`
i 5

J`
→

11J`
→ , r`,e

i ~ i !5
r`,e

→ ~ i !1J`
→

11J`
→ ~e5 l,r!, ~6!

to the results forr`,e
→ ( i ), one obtains the corresponding e

pressions forr`,e
i ( i ), i 51,2, . . . , e5 l,r. We emphasize

that the resulting expressions for the density profiles
semi-infinite chains are much simpler than those on fin
chains, and they again involve integrals that are of
Laplace type for large distances from the chain end. Hen
their asymptotic behavior is readily deduced. In order
make precise comparison with the asymptotic expansions
the right-hand local density profiles obtained in@10#, one has
to take into account that there, before taking the limitL
→`, the sites are labeled from the right end of the chain
the left by n5L2 i 50,1,2, . . . , rather than byj 5L2 i 11
51,2, . . . , as in ourdefinition ~4!. By comparing the largej
asymptotic behavior ofr`,r

i ( j ), obtained via the mapping~6!
with the corresponding results of Evans, Rajewsky, a
Speer@10# for rn with n5 j 21, we find complete agreemen
in all but two cases, in which we correct technical errors
the final asymptotic expressions~9.22! and ~9.28! given
there. The expressions for the slope of the density pro
derived in@11# for general values of the hopping probabili
p actually represent the leading-order asymptotic forms
tL( i ) that follow from our expressions for the local densi
rL( i ) @12# in the semi-infinite chain limitL→` and in the
leading-order expansion in finite but largeL2 i 5n@1; see
the results and comments below. For recent general revi
on the MPA, ASEP, and related systems we refer the rea
to @13–15#.

Concerning the notation, we make the following remar
In contrast to our previous work@12#, here we shall adhere to
the conventional labeling of the different regions in the pha
diagram ~see Fig. 1!. The mean field line shown there i
given by the equation (12a)(12b)512p, and the two
other special lines are defined by

a5ac[12A12p, b5bc[12A12p. ~7!

The exact finite-chain results obtained in@12# are conve-
niently expressed in terms of the parameters

d5A12p, a5d1d21, j5
p2a

ad
, h5

p2b

bd
,

~8!

which will be used here too.
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II. LOCAL DENSITY IN THE MAXIMUM-CURRENT
PHASE

The maximum-current phase occupies the regionac,a
<1 andbc,b<1; see regionC in Fig. 1. In terms of the
variables ~8! the above inequalities read2d<j,1 and
2d<h,1.

The final exact result obtained in@12# for the local particle
density in the maximum-current phase is

rL~ i !5
1

2
~12JL!1

d

2pZL
@FL~ i !2~j2h!Zi 21ZL2 i #.

~9!

HereZn5Zn(j,h) has the representation (jÞh)

Zn~j,h!5S d

pD nF j

j2h
I n~j!1

h

h2j
I n~h!G , ~10!

which involves the integral

I n~j!5
2

pE0

p

df
~a12 cosf!nsin2 f

122j cosf1j2 . ~11!

The expression forZn(j,j) follows by taking the limith
→j in Eq. ~10!. The currentJL(j,h) is given by

JL~j,h!5ZL21~j,h!/ZL~j,h!. ~12!

The termFL( i )5FL( i ;j,h) in Eq. ~9! is an antisymmetric
~with respect to the center of the chain! function of the inte-
ger coordinatei , FL( i ;j,h)52FL(L2 i 11;j,h), defined
for 1< i<@L/2# (@x# denotes the integer part ofx) by the
equation

FL~ i ;j,h!5S d

pD L21

~12jh! (
n50

L22i

I L2 i 2n21~j!I i 1n21~h!.

~13!

In order to take the limitL→` in Eq. ~9!, we make use of
the large-n asymptotic form of the Laplace-type integr
~11!:

I n~j!5
~a12!n13/2

2Ap~12j!2
n23/2@11O~n21!# ~jÞ1!

I n~1!5
~a12!n11/2

Ap
n21/2@11O~n21!#. ~14!

By substituting the above expansion in Eq.~10!, we obtain
that in the maximum-current~MC! phase the leading
asymptotic form ofZn(j,h) is (jÞ1,hÞ1)

Zn
MC~j,h!5

12jh

2Ap~12j!2~12h!2 S d

pD n

3
~a12!n13/2

n3/2
@11O~n21!#. ~15!

Hence, the asymptotic form of the current reads
04611
JL
MC5

12A12p

11A12p
@11O~L21!#, ~16!

independently of the parametersa and b. With the aid of
Eq. ~15!, at fixed i we obtain

lim
L→`

d

2p

Zi 21ZL2 i

ZL
5

jI i 21~j!2hI i 21~h!

2~j2h!~a12! i
. ~17!

Next, we split the sum overn in Eq. ~13! into two parts, from
0 to @L/2#2 i and from@L/2#2 i 11 to L22i , and replace
the cofactor in the productI L2 i 2n21(j)I i 1n21(h) which has
a large subscript asL→` by its asymptotic form~14!. Thus,
we prove the limit

lim
L→`

d

2p

FL~ i ;j,h!

ZL~j,h!
5

1

2 (
n50

` F ~12j!2I i 1n21~j!

~a12! i 1n11

1
~12h!2I i 1n21~h!

~a12! i 1n11 G . ~18!

Finally, by using the identity

1

2 (
n50

`
~12j!2I i 1n21~j!

~a12! i 1n11
5

Gi 212jI i 21~j!

~a12! i
, ~19!

where

Gn5
1

pE0

p

df~a12 cosf!n~11cosf!, ~20!

and collecting the above results, we obtain an exact exp
sion for the local density profile of a semi-infinite chain wi
left-hand end point in the form

r`, l
→ ~ i !5

d

11d
1

1

~a12! i @Gi 212jI i 21~j!#. ~21!

The approach of the left-hand profile for finite chains, o
tained by computer simulations, to the limit~21! as the chain
size increases is illustrated in Fig. 2.

The asymptotic behavior fori @1 readily follows from the
expansions~14! and

Gi 215
~a12! i 21/2

Ap
F i 21/22

a

16
i 23/21O~ i 25/2!G . ~22!

Thus we obtain

r`, l
→ ~ i !5

d

11d
1

d1/2

Ap~11d!
i 21/22

1

Ap~11d!
F 22p

16d1/2

1
ad1/2~p2a!

2~a2ac!
2 G i 23/21O~ i 25/2!. ~23!
1-3
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Hence, by using the symmetry relation~5! and the mapping
~6! onto the case of parallel update, after taking into acco
the correspondencen5 i 21 with the expansion variable
used in@10#, we obtain

rn[r`,r
i ~n11!5

1

2
2

d1/2

2Ap
n21/21F22p18d

32Apd1/2

1
bd1/2~p2b!

4Ap~b2bc!
2Gn23/21O~n25/2!. ~24!

This result coincides with Eq.~9.22! of Ref. @10# except for
the sign of theO(n21/2) term. The first two terms in the
right-hand side of Eq.~24! generate Eq.~87! in @11#, pro-
vided the slope of the density profile is considered there n
the right-hand boundary of a semi-infinite chain, i.e., wh
L→`, i /L→1.

III. LOCAL DENSITY IN THE LOW-DENSITY PHASE

The low-density phase occupies the regiona,b and a
,ac ; see regionA5AIøAII in Fig. 1. In the case of a finite
chain of L sites, up to corrections exponentially small inL
the current in the low-density~LD! phase is@12#

JL
LD~j,h!.

p

d~a1j1j21!
5

a~p2a!

p~12a!
. ~25!

With respect to the asymptotic form of the density profi
near the right-hand end of the chain, one distinguishes
subregions,AI and AII.

FIG. 2. The approach of the left-hand local number-density p
file r versus the site numberi in the maximum-current phase (a
5b50.8, p50.75), obtained by computer simulations for fini
chains of length L @solid squares,L5300, solid triangles,
L51000~data averaged over 300 runs of 216 Monte Carlo steps pe
site!#, to the limit given by Eq.~21! ~solid line!.
04611
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Subregion AI. a,ac and a,b,bc (j.h.1). As
shown in @12#, up to terms that are uniformly ini
51, . . . ,L exponentially small asL→`, the local density is

rL~ i ;j,h!.
a~12p!

p~12a!
1

h2h21

a1j1j21 S a1h1h21

a1j1j21 D L2 i

2
jI L2 i~j!2hI L2 i~h!

~a1j1j21!L2 i 11
. ~26!

Hence, in the limitL→` at fixed i, we obtain thatr`, l
→ ( i ) is

uniform, equal to the bulk density given by the first term
the right-hand side of Eq.~26!. If the limit L→` is taken at
fixed j 5L2 i 11, we obtain the exact expression for th
nontrivial density profile on a semi-infinite chain with righ
hand end point:

r`,r
→ ~ j !5

a~12p!

p~12a!
1

h2h21

a1h1h21 S a1h1h21

a1j1j21 D j

2
jI j 21~j!2hI j 21~h!

~a1j1j21! j
. ~27!

At large distance from the end of the chain,j @1, the
leading-order asymptotic form ofr`,r

→ ( j ) is given by the first
two terms in the right-hand side of Eq.~27!. Upon mapping
on the case of parallel dynamics@see Eq.~6!#, and taking into
account the labeling correspondencej 5n11, our result co-
incides with Eq.~9.25! of @10#. Thus, the leading-order ex
pression for the slope of the density profile asn→` exactly
reproduces Eq.~82! in @11#.

Subregion AII. a,ac and b.bc (j.1 andh,1). As
shown in @12#, up to terms that are uniformly ini
51, . . . ,L exponentially small asL→`, the local density in
this subregion is

rL~ i ;j,h!.
a~12p!

p~12a!
2

jI L2 i~j!2hI L2 i~h!

~a1j1j21!L2 i 11
. ~28!

Hence, in the limitL→` at fixed i, we obtain thatr`, l
→ ( i ) is

again uniform, equal to the bulk density. When the limitL
→` is taken at fixedj 5L2 i 11, we obtain the exact ex
pression for the nontrivial density profile on a semi-infin
chain with right-hand end point:

r`,r
→ ~ j !5

a~12p!

p~12a!
2

jI j 21~j!2hI j 21~h!

~a1j1j21! j
. ~29!

At large distance from the right-hand end point,j @1, the
leading-order asymptotic form ofr`,r

→ ( j ) in subregionAII is

r`,r
→ ~ j !5

a~12p!

p~12a!
2

Aa12

2Ap
F j

~12j!22
h

~12h!2G
3S a12

a1j1j21D j

j 23/21O~ j 25/2!. ~30!

-
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EXACT DENSITY PROFILES FOR THE FULLY . . . PHYSICAL REVIEW E63 046111
A comparison of the right-hand density profile for a fini
chain @Eq. ~28!# and its leading-order asymptotic form on
semi-infinite chain@Eq. ~30!# with the result of computer
simulations forL5300 is given in Fig. 3.

Upon mapping on the case of parallel dynamics@see Eq.
~6!#, expressing the result in terms of the original parame
a and b, and taking into account the labeling correspo
dencej 5n11, we obtain

r`,r
i ~n!5

a~12a!

p2a2 2
a~p2a!

2Ap~p2a2!

d1/2

12d F a~p2a!

~a2ac!
2

2
b~p2b!

~b2bc!
2GF a~p2a!

~12a!~12d!2Gn

n23/2

1OS n25/2F a~p2a!

~12a!~12d!2GnD . ~31!

This is the correct version of Eq.~9.28! in @10#; the error
there occurred on passing to the second equality in
~9.27!. For the slope of the density profile the first two term
in the right-hand side of Eq.~31! yield Eq. ~84! in @11# as a
leading-order expression whenn@1.

The boundary between subregions AI and AII. a,ac and
b5bc (j.1 andh51). The exact expression for the de
sity profile on a semi-infinite chain with right-hand end po
is given by Eq.~29! at h51. Its large-distance asymptoti
form is readily obtained with the aid of expansions~14!:

FIG. 3. The behavior of the right-hand number-density profiler
versus the scaled distancer 5 i /L in subregionAII ( a50.2, b
50.6, p50.75): the solid squares present the results of comp
simulations for a finite chain ofL5300 sites, the solid line corre
sponds to Eq.~29! for L5300, and the dotted line to the leading
order asymptotic form of the profile for a semi-infinite chain giv
by Eq. ~30!.
04611
rs
-
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r`,r
→ ~ j !5

a~12p!

p~12a!
1

1

ApAa12
S a12

a1j1j21D j

j 21/2

1O~ j 23/2!. ~32!

Upon mapping on the case of parallel dynamics with the
of Eq. ~6!, we recover exactly Eq.~9.29! in @10#. Thus, for
the leading-order asymptotic form of the slope of the dens
profile asn→` one obtains Eq.~83! in @11#.

IV. DISCUSSION

Summarizing, we have calculated exactly the local d
sity profiles in all the phases of the FASEP on semi-infin
chains with open left-hand~particle injection! or right-hand
~particle removal! boundary. The expressions obtained a
much simpler than the finite-size ones, and they readily
mit large-distance asymptotic analysis.

The following general features of the local density pr
files on semi-infinite chains turn out to be common to all t
basic updates.

~i! The profile in the maximum-current phase depends
the boundary condition at the finite end point of the cha
and does notdepend on the boundary condition at infinit
The leading-order approach to the bulk density with the d
tancei from the chain end is of the orderO( i 21/2) and does
not depend on the boundary conditions at all.

~ii ! The local density is uniform in the low-density pha
of a chain with left-hand end point, and in the high-dens
phase of a chain with right-hand end point.

~iii ! The local density profiles in the low-density phase
a chain with right-hand end point, and in the high-dens
phase of a chain with left-hand end point, depend on
boundary conditionsbothat the finite end point and at infin
ity. This fact is reminiscent of the dependence of equilibriu
states with spontaneously broken symmetry on bound
conditions at infinity. However, it is the continuity of th
current that here keeps the information about the bound
condition at the chain end that goes to infinity in the lim
L→`.

~iv! The analytic form of the local density profile on
semi-infinite chain with right-hand~left-hand! end point
changes on passing from subregionAI (BI) to subregion
AII ( BII) within the low-density~high-density! phase@com-
pare Eqs.~27! and ~29!#. The leading-order large-distanc
asymptotic approach to the bulk density is also qualitativ
different: in AI (BI) the approach is purely exponentia
with inverse correlation lengthl215ulj

212lh
21u, while in

AII ( BII) the approach is exponential, with power-law pre
actor j 23/2 and inverse correlation lengthlj

21(lh
21), where

lj
215 lnS a1j1j21

a12 D . ~33!

On the borderline between these two subregions the lead
order asymptotic approach is exponential, with power-l
prefactor j 21/2 and inverse correlation length given b
lj

21(lh
21). On crossing the mean-field line in subregio

AII ( BII), the analytic form of the profile does not chang

er
1-5
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JORDAN BRANKOV AND NINA PESHEVA PHYSICAL REVIEW E63 046111
only its bending near the right-hand~left-hand! end changes
from downward~upward! above that line to upward~down-
ward! below it @see Eq.~30!#.

~v! The correlation length depends on the type of upd
only: for all the true discrete-time updateslj is given by Eq.
~33!, and for the random-sequential update@see Eq.~78! in
@3##

la
215 lnS 1

4a~12a! D . ~34!

We point out that from the mapping~2! of our exact re-
ys

,

c

04611
e

sults for the finite-chain currentJL
→ and local densityrL

→( i )
@12# onto the case of parallel update, exact representat
for JL

i andrL
i ( i ) follow, which, in contrast to those found in

@10#, are convenient for asymptotic analysis. Finally,
comparing the asymptotic results so obtained to those p
lished in @10#, we have corrected technical errors in two
the expressions given there. The leading-order large-dista
expressions that follow for the slope of the density profi
near the right-hand end point of a semi-infinite chain rep
duce the corresponding results obtained in@11#.
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